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Lattice model of the early stages of the electrification of a cloud
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The early stages of the microphysics of the electrification process within a cloud are considered using a
two-dimensional lattice model. Using insights generated from Monte Carlo simulations and the theory of finite
Markov processes, the mean walk length statistics of the particles, the instantaneous electric potential and
electric field profiles, the time evolution of electrostatic energy and their dependence on system size are
studied. Some unexpected features of the kinetics of electrification and of the statistics of crossings of the
threshold for an electric discharge to occur are brought out.
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I. INTRODUCTION (iii) The inductive mechanism which postulates that the
charging process is associated with the polarization of drops

Transient electric discharges occurring within clouds ordue to the external electrical field. The opposite charges are
from cloud to ground rank among the most intriguing naturalsubsequently separated by collisions and differential motion
phenomena. In addition to their fundamental scientific inter-as in(ii).
est they interfere with processes of industrial, economic, and All these mechanisms are believed to contribute to cloud
societal concern and, contrary to common belief, they are faglectrification, but their respective roles are still an open
from exceptional eventgl]. question. _

The gross features of the electrification and discharge pro-, 11€ Present work is devoted to the early stages of the
cesses can be summarized as follows. Strongly convectiaPOVe charging process. We focus on the noninductoe
clouds generated by the thermal instability of humid air del'Siona) mechanism and implement this mechanism on a ver-
velop rapidly in thunderstorm cells. During this dynamical pcal section of a_cloud, assimilated to a square—_planar lattice
development, strong updrafts carry up ice crystals, dropletd? & thermal environment a}bove the aforementioned chgrge
and graupels. These particles become charged and are sub&Yersal temperature in which the reactants perform a diffu-
quently separated by their differential vertical motions insideSIVe motion that will be assimilated in our lattice model as a
the cloud. This process induces an electrification of the storffi@ndom walk. Our purpose is to analyze the interplay be-
cell resulting in a multipole structure with positive charges attWeen kinetics, spatial extent, electrostatic, and gravitational
the cloud base. When the amplitude of the electrical fieldOr¢€S in the efficiency of the reactive collision process giv-
attains a sufficiently high value inside the cloud, the first!d MS€ to positive and negative charges. In partlcular,. the
cloud-to-cloud lightnings occur. The maximum lightning ac- Kinetics of the charge separation process and of the buildup
tivity takes place when the vertical development of the stornf! €lectric fields above a prescribed threshold will be deter-
is optimal. This is the mature stage of the storm cell. At thatTined with emphasis on the dependence of the characteristic
time, cloud-to-ground lightnings appear and may cause coriMes on the size and on the boundary conditions. Such char-
siderable damage at the ground level. acteristic times constitute an important piece of information

Several theories have been developed advancing differefff’ the purposes of prediction that, as well known, is espe-
mechanisms for the microphysics of the charging procesgl_ally_eluswe as far as the timing and localization of an elec-
[2,3]. tric discharge are c_onc_ern@_d]. _ _ _

(i) The convective theory in which ions generated in the The general setting is laid down in Sec. I_I. Seguon I is
atmospheric boundary layer are convectively trapped into thd€voted to the computation of the characteristic times, mea-
cloud and induce a charged layer on its boundaries. sured as the mean walk lengfip performed by the particles

(il The noninductive theory which postulates that the parPrior to the termination of the process. The dynamics of the
ticles are charged by collisions and separated by updraft angectrlﬂcatlon is c_onS|dered in Sec. IV. The main conclusions
by the gravitational force. The polarity of charge transferd’® summarized in Sec. V.
depends, in this case, on the ambient temperature and water
content. In particular, there is a charge reversal temperature
(at about —10°C) above which collisions between large
graupels and smaller ice crystals result in, respectively, posi- Consider a thermodynamically open system involving
tively and negatively charged heavy and light particles. heavy(H) and light(L) particles, the former being essentially

Il. FORMULATION
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the aggregates of the latter. Particles belonging to these tweess described above will then be terminated wiagnn the
species can perform a random walk on a square-planar latticgcenario H1L 1), H or L reach for the first time the lower or
or undergo reactive collisions according to the scheme  the upper boundary, respectively, @), in the scenario
o 1o L (H2L2), whenH andL eventually both reach, in any order,
R+l =H "+, (D the lower and the upper boundary, respectively.
. . ) . We now specify the rules governing particle interactions
where the superscripts, 0 indicate, respectively, positively 0an particle collisions. Following recent work by the present

charged, negatively charged, and electrically neutral forms —authorg 8,9], we stipulate thaH andL interact via hard core
H andL. The random walk performed by the heavy species ISfepulsion prohibiting particle crossing and the simultaneous

biased by the effect of gravity, whereas for the light partldesoccupation of a given site by more than one particle. A

it is assumed that gravity is canceled by updraft arising fronhead-on collision where one particle BP and one particle

advection
. ] " .
Before we undertake the analysis of the above define@’ L~ tyPe ténd to occupy the same position or to cross is

dynamics on the lattice it is desirable to establish some corfonsidered to be a reactive collision configuratjérward
nection between the lattice spaciag and the particle hop- SteP of Eq.(1)]. It results in the conversion dfi”, L™ into
ping time At on the one side, and the scales involved inH™, L™, respectively, and the particles are reset thereafter to
typical cloud conditions on the other. As well known, the their previous positions. Conversely, a head-on collision of

relevant transfer mechanism is here edtybulenj diffu- H™ andL™ will lead to the replacement bi® andL° and

sion rather than molecular diffusion. A typical value of the the subsequent resetting. There is, however, a subtlety in this

associated eddy diffusivity coefficient is[5,6] «, latter case, since it now seems reasonable to introduce a

~10n?s . It follows thatAr and At must satisfy the re- “Coulomb bias” favoring the occurrence of reacti™-L ~

lation collisions when the distance between the species is small. In

principle, this bias and the one associated with the effect of

Ar? . gravity on the random walk oH are to be described by
m_'(tmlo' suitable Boltzmann factors. In practice, in what follows it

will be expressed through a fixed enhancement of the transi-

On the other hand\r must clearly be of the order of or less tion probability of the relevant step over the other steps,
than the sizef, of a typical eddy. It is knowf7] that much  being understood that care is taken to ensure that such con-
of the energy in turbulent cloud motions is contained in ed-ditions as conservation of total probability are satisfied. In
dies or irregularities smaller than 100 m. Combining thisparticular, in the presence of gravitational bias the downward
with Richardson’s empirical formula for turbulent particle transition probability will be taken three times larger than the
diffusion [6] «,=0.2* we arrive atl values of 10 m or so. upward one. As for the Coulomb bias in some of the cases it
ChoosingAr =10 m we then obtain from the relation linking will be taken in its extreme form whereby charged particles
Ar to At the estimateAt=5s. The life cycle of a thunder in nearest-neighbor positions will react with probability 1.
cloud is of about 60 min, i.e., about 700 time unis. This Despite its apparent simplicity the problem defined by
places on the mean walk length) previously defined the relation (1), the boundary conditions and the collisional
upper bound of 700, since the process described by(Hq. rules, is not solvable in a closed form, not even in its mean-
must be completed within the cloud life cycle. field version which already involves four coupled nonlinear

We now come back to the analysis of our lattice model.reaction-diffusion equations. In the following sections it will
To have a well posed problem we need to specify the boundse studied by Monte Carlo simulation techniques. Some ana-
ary conditions. As there are no constraints acting along théytic insight will also be obtained using the theory of finite
horizontal direction we choose periodic boundary conditiondVlarkov processes.
for this direction. On the other hand, when hitting the lower In the Monte Carlo simulation, a large number of realiza-
boundary the particles are subjected to the following conditions (typically 1%P) is carried out, covering all possible dis-
tions: (1) no flux (confining boundary conditions fok, (2)  tinguishable initial configurations. In each realization the al-
exit boundary conditiongthe particle leaves the system, sce-lowed transitions are determined following the collision rules
nario (H1)], or sticky boundary conditionfthe particle re- and the usual prescriptions of the random walk. The process
mains confined in the boundary, scenarit2()] for H with,  is terminated when the conditions specified earlier in the
in the latter casel being left or not the possibility to per- present section are satisfied.
form a random walk in the horizontal direction. Conversely, Coming to the application of the theory of finite Markov
the following conditions are stipulated in the upper bound-processes, we first briefly review the case of a single diffus-
ary: (1) no flux (confining boundary conditions foH, (2) ing particle and a stationary trap placed at lattice bitel.
exit boundary conditionfscenario [ 1)] or sticky boundary The probability of the survivalwithout absorptioh of the
conditions[scenario [2)] for L with, again, the choice to particle aftem time steps starting from any initial sitesat-
remain frozen or to perform a random walk in the horizontalisfies the discrete version of the backward Kolmogorov
direction. equation. As a consequence of the linearity of this equation,

The present work is limited to the case where only twothe moments of the survival time until absorption satisfy a
neutral particles of different mass or two charged particles ogystem of inhomogeneous, linear, simultaneous equations.
opposite charge are initially present in the lattice. The prolet T,(“q) (whereq=0, 1, ...)denote theggth moment of the
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TABLE |. The Markovian and the Monte Carlo results on mean time prior to termination fot & &nd

a 5x5 lattice.
Scenario H1L1) Scenario H2L2)
GravitylCoulomb bias Gravity and Coulomb bias
No[No  NdYes YesNo YedYes H,Limmobile H, L mobile on
on boundaries boundaries

3X3 Markov 10.394 11.949 5.914 7.051 21.688
lattice

Monte

Carlo 10.351 11.938 5.918 7.090 22.200 27.046
5X5 Markov 21.740 22915 9.374 10.238 50.592
lattice

Monte

Carlo 21.857 22.803 9.321 10.200 47.790 52.009

survival time(the time to trappingfor a walk originating at ~ corresponding to each such configuration into symmetry-
sitei on a given lattice of sizé\. Thus,Ti(”q) is also theqth  distinct stateg10]. That is, instead of following the site-to-
moment of the walk length for a random walk starting.at Site transitions of a single particle diffusing on a lattice, one
By definition T(lnézo- For 2<i<N we have, recalling that Now documents the evolution @ll) joint configurations of

the time step has been set equal to unity, two (or more particles. This being done, the formal appara-
tus of the backward Kolmogorov equation can be imple-
AT = (a+ DT, (20  mented directly, and numerically exact values of the mean

) S lifetime of a reaction pair on a given lattice can be calculated
where a summation over the repeated infleximplied, and  gjthough, contrary to the one walker plus trap case, no gen-

Aj; stands for the discrete Laplacian eral closed form expressions can be derived. The first step in
1 this procedure is to specify the possible two-particle configu-
Aj=— 52?']_)_ 5ikjf. ©) rations on the lattice under study. For example, on the

i

3X3 square-planar lattice, there are, in principle, 72 joint
configurations(stateg. For each joint configuration, there
are, corresponding to a given displacement of the first par-
ticle, four possible displacements of the second patrticle, a
) ) o Adtal of 16 new configurations into which a given configura-
walk lengthsT;" is obtained by setting=0 in Eq.(2). The oy can evolve. Thus, the Markovian transition probability
quantity T{"J is the zeroth moment of the distribution of the matrix for the forward reaction in Eq1) has 72 16 non-
time of first passage to the trap from the origimand is equal  empty entries. Similarly, for two particles undergoing simul-
to unity since absorption at the trap is a sure event for everyaneous displacements on x5 square-planar lattice, there
starting pointi. As we shall be concerned throughout with g6 00 possible joint configurations, and 6Q6 entries in
just the set of first moment") , we drop the index corre-  the transition probability matrix.

Here, v; is the coordination number of siteé!‘jr is the Kro-
necker delta, andj) indicates thaj is a nearest neighbor of

sponding toq henceforth and Writé'i(“) for this quantity. We The problem under study involves a charge transfer for-
therefore have ward step and a neutralization reaction for the reverse step.
To deal with this complexity, a second manifold of possible
_AijTJ(n):l- 4 transitions, corresponding to the reverse reaction above, was

T o considered explicitly. This second manifold also has 72

V\{ﬁ) seek the mean walk lengih™, which is the average of 16 possible transitions for the>33 lattice and 608 16
T over starting sites distributed uniformly over all sites possible transitions on the>85 lattice. Transitions from the
of the lattice other than the trap site-1. This is given by  first manifold (the forward reactionto the second manifold
N (the reverse reactignand vice versa, were specified to occur
2 (—A D). (5) upon cgllision of the _respective reactants. Then, using t.he
2 =2 v Markovian theory outlined above, the mean number of dis-

placements of the reactants before the termination of the pro-
where use has been made of E4) in writing the second cess(effectively, the mean lifetime of the diffusion-reaction
equality. We note thaA is a nonsingular matrix. even} was determined directly.

The generalization of this standard approach to the case of To complete the technical specification of the Markov
two (or more simultaneously diffusing particles as in rela- problem, gravity was introduced by biasing the motion of the
tion (1) is to classify all initial configurations of the particles heavy particle(only) in its vertical displacements. Coulom-
on a given lattice and to document all concerted motiondic interactions between the two particles in the “backward”

1 1

N
= (n):
CETP R TT]

M z

T(M
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FIG. 1. Mean walk length vs lattice size in the case of the FIG. 2. Asin Fig. 1 but in the case of the scenafit2L2).
scenario(H1L1) in the presence of zer@) and finite (b) gravita-

tional bias. Empty circles stand for no Coulomb bias and crosses fog1 5% 5 lattice under the various conditions defined in the
extreme Coulomb bias whenever particles are charged. Averaging |

R -, i Breceding section. Both exit and sticky boundary conditions
performed over 1Drealizations and the initial position@onover- idered. A ted : v th itV bi h
lapping of the particles on the lattice as well as their polarity are are ConS'_ ered. As noted previously, the gravity bias w _gn
chosen randomly. Here and in the following figures the quantitiesoresem’_ IS ex3pressed by an en_hanced downward Fransmon
plotted are dimensionless. probability of 5. The Coulomb bias, when present, is here
taken in its most extreme version in which if the two par-

manifold were taken into account by assigning a probabilitytic|es initially occupy adjacent or next to adjacent positions,
that when the twdcharged particles were adjacent to each reaction will occur with probability 1.

other, neutralization occurred in the very next step. As seen from the table, the agreement between the Mar-
Finally, we note that the imposition of periodic boundary ., and the Monte Carlo results is excellent throughout, ex-
c_ond|_t|_ons_on _the vertical boundaries of the cell allows SOmecept in one of the situations pertaining to sticky boundary
_S|rnpl|f|cat_|on n the problem, by coll_apsm_g the number of conditions where a difference of about 5% is found. Gener-
joint configurations of the two particles into a subset OfaIIy speaking, the gravity bias tends to accelerate the process

symmetry-distinct configurations. In the_<55_ lattice, for ex drastically. The effect of the Coulomb bias goes in the oppo-
ample, the total number of symmetry-distinct configurations

that needed to be considered dropped 168 each mani- site direction, but is less drastic that the gravitational one.

fold) when periodicity on the vertical boundaries was taken The Monte Carlo simulations have also been extended to
into accoun? y lattices of sizes up to 2020, for which the Markovian ap-

proach becomes impracticable. In view of the discussion on
space scales at the beginning of Sec. Il, such sizes corre-
spond to a linear dimension of up to a few hundred meters.
Table | summarizes the Markovian and the Monte CarloThey allow us to capture some essential parts of the dynam-
results on the mean time prior to termination for &3 and  ics, since a typical vertical extent of a single thunder cloud is

IIl. WALK LENGTH STATISTICS
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FIG. 3. Mean walk length in the case of the scenafid$L1)
(empty circle$ and(H2L2) (crossesand in the presence of extreme
Coulomb bias, with no gravitya) and with finite gravity biagb).

FIG. 4. Electric potential vs vertical distanaeat increasing
times as obtained from Monte Carlo simulations in>a%lattice in
the presence of the C3:ou|omb bias equa% with no gravity(a) and
?e::?iv(\)/nkilometers and considerably less in the horizontal d|ﬁ1r$\;'|t|¥/ mzsp(;?tﬁ;%ar(?h;:ﬁa?guerg?er of realizations is 3@nd

The main result on mean walk length for the scenario
(H1L1) is summarized in Figs.(4 and b) pertaining, successively, zert) and finite(b) gravitational bias. Part of
respectively, to zerga) or to finite gravitational bias for the this increase arises from the fact that a particle stuck in one
heavy particlegb) after an averaging over 1@ealizations. of the boundaries can still interact with the second particle in
Furthermore, in each figure, the cases of no Coulomb biathe bulk, thereby delaying its eventual trapping at the other
(empty circleg and of extreme Coulomb biggrossesare  boundary.
depicted. As can be seen the dependencépofvith linear As mentioned in the Introduction, quantities such as the
size is markedly nonlinear in the absence of gravitation, angnean walk lengthin) provide relevant information for the
tends to become linear when the gravitational bias is inpurpose of prediction, since they give an estimate, from the
creased. One may also notice that the valueépare well  first principles, of the characteristic time for electrification.
below the upper limit introduced in the beginning of Sec. Il. This constitutes, in turn, a lower bound for an electric dis-

Figures 2a) and 2b) depict the corresponding results for charge to occur. In previous work by the present authors
the scenarioi2L2). Here, as well as in the seque) L are  [8,9], it was shown that the encounter times are subjected to
allowed to perform a random walk in the horizontal directionhigh variability around their mean. In the present context,
on the boundaries. As can be seen, for the same gravitationtidis feature reflects the difficulties inherent in issuing quan-
bias as before, the dependencémfwith size is now clearly titative predictions on the time of occurrence of a discharge.
nonlinear. Finally, Figs. @& and 3b) illustrate the increase It will be addressed in the following section using quantities
of (n) in the case of stickycrosses versus exit boundary of more direct relevance tham) itself, such as electric po-
conditions(empty circleg for extreme Coulomb bias and for, tential differences and electric fields.
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FIG. 5. Mean potential differend@) and mean square deviation
of potential differenceb) without gravity bias(full line) and with

gravity (dashed ling Parameters as in Fig. 4. FIG. 6. Probability density of times for the system to reach a
prescribed critical potential differenceV, with no gravity(a) and
IV. KINETICS OF ELECTRIFICATION with gravity (b). Parameter values as in Fig. 4.

The Markov and Monte Carlo techniques can be used to
monitor the instantaneous positions of the heavy and lighbeing understood that=0, W= 0 when the particles happen
particles in their charged configurations and, through themto be in their neutral form. As for the instantaneous electric
compute various quantities pertaining to the electrificatiorfield at pointr, it can be computed from Eg6) through the
and discharge processes such as the instantaneous valuedisicretized version of the relatida=—VV.
local electric potential, electric field, and electrostatic energy For the prototypical model of two reacting and diffusing
within the lattice. particles considered in the present wokk,and E would
Letr be the two-dimensional position vector in the lattice, fluctuate in both space and time akdwould fluctuate in
r=(i, j) wherei andj run, respectively, over the horizontal time in any given realization of the process. Some general
and vertical directions. We denote by(t) the instantaneous trends concerning their behavior can, however, be obtained
positions of the positively and negatively charged specieshy averaging expressior{§) and (7) and related quantities
The instantaneous electric potential at a poiitt the lattice ~ over different realizations, each of these realizations being
and the total instantaneous electrostatic energy of the latticearried out till its termination. In the scenariti{L1) this
are then(up to a constant multiplicative factogiven by means that . (t) will sooner or later be found outside the
lattice: V, E, andW will eventually tend to zero, and after a
transient stage of electrification the lattice will be discharged.
V(r,t)=> - , (6) Incontrast, in the scenaridi2L2) the lattice will finally be
r’ [r=r] subjected to charge separation and behave as a condenser, at
least until the conditions for a dielectric breakthrough are
5 (t)éffr @ met. In both cases, the variability of the relevant quantities
W(t)zz ; (7) around the mean will also be probed by constructing appro-
oo (O =r_(t)] priate probability distributions.

5kr 5kr

rra G
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FIG. 7. Probability distribution of the vertical distances of electrified particles at different times under the conditions ¢bFap4
50 000 realizations.

Figures 4a) and 4b) describe the instantaneous meanwill be subjected to variability. More generally, level cross-
vertical spatial profiles of the electric potential in a5 ing processes and extreme value related properties are known
lattice in the absencéa) and presencéb) of gravitational to exhibit in their own right a high variability around the
bias and for the Coulomb bias equal §pin the scenario mean[11]. To assess the presence of such a property in the
(H2L2). Figure %a) shows how the mean potential differ- problem at hand we monitor the crossing times of the thresh-
ence AVs ., between the top and bottom of the layer isold value by the individual realizations of the process, and
building up in the course of time. The standard deviation ofconstruct from these data the corresponding probability den-
the instantaneous potential differences associated with diffesity. The result is shown in Figs(#® and @b) for different
ent realizations around this mean is depicted in Figp).5 threshold valueaV, in the absencéa) and presencé) of
One observes a high variability of potential differences, closéhe gravitational bias and for a Coulomb biasgofwe ob-
to 50% at the time of the peak value of the mean. serve the presence of long tails, suggesting that large devia-

A quantity of great interest that can be inferred from Fig.tions from the mean can occur with high probability. For the
5(a) is the timet,, at which a threshold valuaV, of the = example ofAV.=0.5 considered in connection with Fig. 5,
potential difference is crossed. This will provide information one obtains(t.)~45.5, very different from the value,,
on when a discharge can take place by taking appropriates 70 inferred from the kinetics of the mean potential differ-
threshold valued V., as long as these values do not exceedence. This reflects the high variability of the process as wit-
the maximum value that can actually be attained. As an exnessed also by a standard deviatioft2)*?~27.1, quite
ample, forAV,= 0.5 one finds from Fig. 5 in the presence of comparable to the mean. It provides an interpretation of the
gravitational bias a timeé,, of about 70 units. On the other observation that the times at which an electric discharge oc-
hand, on the basis of Fig.() one expects that this value curs are widely distributed and hence difficult to predict. It
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also shows that the intrinsic fluctuations generated by thc 01 (5

dynamical processes present tendativancethe crossing ‘\ a
process. \5E

We turn now to a closer analysis of spatial variability. go6 | | )
Such variability, if present, would reflect the fact that fluc- \
tuations are not manifested coherently at the level of the N

whole system but possess, rather, a markedly inhomogeneo /\\\_\“ﬁ_‘ E
0.06 -

character. This is supported by recent results showing th¢
inhomogeneous fluctuations tend to be favored when nonlin AN
ear dynamical processes are taking place in low-dimension: ~a
spaceg12]. 004 | e

An interesting quantifier of spatial fluctuations is provided
by Fig. 7, in which the histogram of the vertical distances
|z, —z_| of the charged particles in ax% lattice recorded 0.02 ‘ .
in the different realizations of the process is constructed fo o 100 200 n 300
the scenarioi2L2) and in the presence of the gravity and
Coulomb bias equal t§. We see that prior to its settling to a
value equal to the vertical size of the cloud, this variable
exhibits strong fluctuations. These are manifested by
“seeding” process where, starting from a homogeneous situ
ation, large distances become suddenly realized at about
time units. Following this seminal event a substantial prob-
ability mass is built in the range of these distances, such th:
at about 50 time unit$éa time of the order of the mean en-
counter times computed in Sec.)lbne observes a transient
bimodality.

The above behavior has interesting repercussions in th
properties of the local electric field. To derive these proper-
ties the instantaneous values of the field are recorded in eau

lattice point. From this information, their me&) maximum
Emax,» @nd minimume,,;, over the lattice are deduced at each
time. Carrying the process for different realizations one car
then construct the statistical properties of these quantities
Figure 8 depicts the time dependencg B, (Emay: (Emin)
and of the associated standard deviations over the realizio.ozs
tions for a 5<5 lattice. As can be seen, the local electric
field varies over a wide range of values while its spatial
mean remains very small for all times. This is further illus-
trated in the histograms associated with these quantitie 0.02
shown in Fig. 9 at a time afi=50 of the order of the mean
encounter timgTable ). The most probable value &,y is

about 0.15, which is just what one obtains by dividing theg.o1s
plateau value oAVs_, 4 in Fig. 5a) by the vertical size of

the lattice. But as the figure shows, much higher values o
Emax Can also be sustained in the lattice and persist for long
times. Such “hot spots” are natural candidates for initiating a *°*
microdischarge. The latter will die out or evolve to a full-
fledged lightning according to whether the heat and charg
transfer rates will be faster or slower than the time scale 0ggos s .
the local(reactive dynamics. This could provide a rationale 0 100 200 n 300
of recent observationd 3] that the conventional breakdown
mechanism alone cannot trigger lightning. This view is fur-
ther corroborated by the time dependence of the electrostat
energy[Eqg. (7)], shown in Figs. 1& and 1Qb) in cases
(H1L1) (a) and H2L2) (b). In both cases the particles are
initially taken to be in the uncharged configuration. We seeelevant conditions. Subsequently, it falls off on a longer
that the energy first evolves toward a maximum that istime scale reaching a value equal to zero in casél(1)
reached at a time close to the value given in Table | under thand to a finite plateau in casel2L2). In a one-dimensional

FIG. 8. Time evolution of the mea(full lines) and mean square
%eviation(dashed linesof the electric field(a), and its local ex-
lreme values, maximurtb) and minimum(c). Number of realiza-
tions is 50 000 and parameter values as in Fig).4
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FIG. 9. Probability density of the quantities of FigiaB-(c) at
n=>50.

system, the value of the latter would be just O(ff inverse
of the height of the lattice multiplied by the probability
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FIG. 10. Time dependence of the electrostatic en&¥gy) in a
5% 5 lattice averaged over @ealizations in casedH{1L 1) (a) and
(H2L2) (b) for zero gravity(full line) and for gravity biagdotted
line) equal tog. Coulombic bias is set té and initial conditions
correspond to neutral particles.

dimensional lattice the value is smaller, since the particles
are allowed to move in the horizontal direction as well.

V. CONCLUSIONS

The study of electrical structure in thunderstorm clouds
has proved to be an ongoing source of fascination and frus-
tration for generations of meteorologists. Recent reviews
[2,3] stress the need for both further laboratory investigations
of charge transfer and modeling studies of charge separation
in the presence of gravity and convection.

The study undertaken in the present paper reveals the
rather remarkable fact that even when the complex, syner-
getic processes of charge formation or neutralization, diffu-
sion and gravitational bias are stripped down to design the
simplest possible lattice-statistical model, one arrives at a
qualitative understanding of the onset of spontaneous electri-

(roughly equal to;) that the particles reach the boundaries infication. Furthermore, a number of subtle effects are already
their charged configurations. In the present case of the twaat play at that level of description leading to the ong®t
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not) of nonlinear behavior in the lifetime of the system as a An important feature that came out from the subsequent
function of spatial extent, to high spatiotemporal variability analysis is the high temporal and spatial variability of the
and to nontrivial kinetics. process and its repercussions in the electrification and dis-
Consider first Fig. 1. In the scenaridi{L1), wherein  charge processes. In particular, the pronounced dispersion of
heavy and light particles survive until one or the other exitsthe time at which the system may cross a threshold value of
the system, the profile of the system lifetirt@s monitored potential difference(Fig. 6) and the fact that high electric
by the mean number of particle displacements before termitie|d values can occur transiently with appreciable probabil-
natior) as a function of the System size displays a d|5t|nCt|y|ty (F|g 9) Suggest a nuc|eation-type mechanism, Whereby
nonlinear character in the absence of a gravitational bias opjcrodischarges are initiated around hot spots within the lat-
the motion of the heavy particle. However, upon introducingtice. They also draw attention on the need that the monitor-
a gravitational biagby imposing an enhanced probability ing and prediction methods of discharges in real clouds
that the heavy particle moves vertically downward and a corshould integrate the high dispersion of impact times and im-
respondingly smaller probability that it moves vertically up- pact points, inherent in such a spatiotemporal variability.
ward), both the qualitative and quantitative behaviors of the pMuch of the analysis of the two-particle system carried
evolution profile change. Qualitatively, the nonlinear behav-gyt in this work can be applied to the more realistic case of a
ior evident in Fig. 1a) collapses to a quasilinear behavior in dilute many-particle system, in which the mean time between
Fig. 1(b). And, quantitatively, there is more than a sixfold syccessive binary collisions is longer than the exit time of
decrease in the lifetime of the system when a gravitationapne of the particles of a colliding pair. The only new effect
bias_ influences the random, diffusive motion of the heavyiyould be a density-related one, causing an increase of the
particle. time of the overall termination of the process owing to the
In the scenarioKi2L2) wherein the heavy particle is en- ayailability of more than one colliding pairs. Of more inter-
trained on the lower boundary and the light particle on theest would be to incorporate many-body effects in the Monte
upper boundary on first encounter, whereas the evolutioarlo and the Markovian analysis giving rise, in particular, to
profiles in the absendéig. 2a)] and presencirig. 2b)] of  particles participating in repeated binary collisions or ternary
gravity are both nonlinear, there is now a remarkable dilatiorhnd higher-order ones. The electrification process would un-
in the time scale of the proceséis-avis the scenario doubtedly become more intricate. In particular, it could yield
(H1L1), viz., a fourfold increase in the absence of gravitythe multipolar structure known to occur in real world clouds

and a 12-fold increase in the presence of gravity. Thesg 3] instead of the dipolar structure characteristic of our
qualitative differences are shown plainly in Fig. 3. two-particle system.

Also evident in Figs. 1-3 is the relative unimportance of
the Coulomb bias, even taken in the extreme limit wherein
neutralization_ occurs v_vith unit_ probability Wh_en the two ACKNOWLEDGMENTS
charged species, in their otherwise random motion, happen to
occupy nearest-neighbor sites on the lattice. The qualitative This work was supported by a NATO Cooperative linkage
effect of introducing the Coulomb bias is to dilate slightly Grant No. PST.CLG.977780 and by the Belgian Federal Of-
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delay induced by the neutralization step. tract No. MO/34/004.
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