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Lattice model of the early stages of the electrification of a cloud
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The early stages of the microphysics of the electrification process within a cloud are considered using a
two-dimensional lattice model. Using insights generated from Monte Carlo simulations and the theory of finite
Markov processes, the mean walk length statistics of the particles, the instantaneous electric potential and
electric field profiles, the time evolution of electrostatic energy and their dependence on system size are
studied. Some unexpected features of the kinetics of electrification and of the statistics of crossings of the
threshold for an electric discharge to occur are brought out.
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I. INTRODUCTION

Transient electric discharges occurring within clouds
from cloud to ground rank among the most intriguing natu
phenomena. In addition to their fundamental scientific int
est they interfere with processes of industrial, economic,
societal concern and, contrary to common belief, they are
from exceptional events@1#.

The gross features of the electrification and discharge
cesses can be summarized as follows. Strongly convec
clouds generated by the thermal instability of humid air d
velop rapidly in thunderstorm cells. During this dynamic
development, strong updrafts carry up ice crystals, dropl
and graupels. These particles become charged and are s
quently separated by their differential vertical motions ins
the cloud. This process induces an electrification of the st
cell resulting in a multipole structure with positive charges
the cloud base. When the amplitude of the electrical fi
attains a sufficiently high value inside the cloud, the fi
cloud-to-cloud lightnings occur. The maximum lightning a
tivity takes place when the vertical development of the sto
is optimal. This is the mature stage of the storm cell. At t
time, cloud-to-ground lightnings appear and may cause c
siderable damage at the ground level.

Several theories have been developed advancing diffe
mechanisms for the microphysics of the charging proc
@2,3#.

~i! The convective theory in which ions generated in t
atmospheric boundary layer are convectively trapped into
cloud and induce a charged layer on its boundaries.

~ii ! The noninductive theory which postulates that the p
ticles are charged by collisions and separated by updraft
by the gravitational force. The polarity of charge trans
depends, in this case, on the ambient temperature and w
content. In particular, there is a charge reversal tempera
~at about 210 °C! above which collisions between larg
graupels and smaller ice crystals result in, respectively, p
tively and negatively charged heavy and light particles.
1063-651X/2003/67~6!/061104~10!/$20.00 67 0611
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~iii ! The inductive mechanism which postulates that
charging process is associated with the polarization of dr
due to the external electrical field. The opposite charges
subsequently separated by collisions and differential mo
as in ~ii !.

All these mechanisms are believed to contribute to clo
electrification, but their respective roles are still an op
question.

The present work is devoted to the early stages of
above charging process. We focus on the noninductive~col-
lisional! mechanism and implement this mechanism on a v
tical section of a cloud, assimilated to a square-planar lat
in a thermal environment above the aforementioned cha
reversal temperature in which the reactants perform a di
sive motion that will be assimilated in our lattice model as
random walk. Our purpose is to analyze the interplay
tween kinetics, spatial extent, electrostatic, and gravitatio
forces in the efficiency of the reactive collision process g
ing rise to positive and negative charges. In particular,
kinetics of the charge separation process and of the buil
of electric fields above a prescribed threshold will be det
mined with emphasis on the dependence of the character
times on the size and on the boundary conditions. Such c
acteristic times constitute an important piece of informat
for the purposes of prediction that, as well known, is es
cially elusive as far as the timing and localization of an ele
tric discharge are concerned@4#.

The general setting is laid down in Sec. II. Section III
devoted to the computation of the characteristic times, m
sured as the mean walk length^n& performed by the particles
prior to the termination of the process. The dynamics of
electrification is considered in Sec. IV. The main conclusio
are summarized in Sec. V.

II. FORMULATION

Consider a thermodynamically open system involvi
heavy~H! and light~L! particles, the former being essential
©2003 The American Physical Society04-1
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the aggregates of the latter. Particles belonging to these
species can perform a random walk on a square-planar la
or undergo reactive collisions according to the scheme

H01L0�H11L2, ~1!

where the superscripts6, 0 indicate, respectively, positivel
charged, negatively charged, and electrically neutral form
H andL. The random walk performed by the heavy specie
biased by the effect of gravity, whereas for the light partic
it is assumed that gravity is canceled by updraft arising fr
advection.

Before we undertake the analysis of the above defi
dynamics on the lattice it is desirable to establish some c
nection between the lattice spacingDr and the particle hop-
ping time Dt on the one side, and the scales involved
typical cloud conditions on the other. As well known, th
relevant transfer mechanism is here eddy~turbulent! diffu-
sion rather than molecular diffusion. A typical value of th
associated eddy diffusivity coefficient is@5,6# k t
'10 m2 s21. It follows that Dr andDt must satisfy the re-
lation

Dr 2

2Dt
5k t'10.

On the other hand,Dr must clearly be of the order of or les
than the size,,, of a typical eddy. It is known@7# that much
of the energy in turbulent cloud motions is contained in e
dies or irregularities smaller than 100 m. Combining th
with Richardson’s empirical formula for turbulent partic
diffusion @6# k t50.2l 4/3 we arrive atl values of 10 m or so.
ChoosingDr 510 m we then obtain from the relation linkin
Dr to Dt the estimateDt55 s. The life cycle of a thunde
cloud is of about 60 min, i.e., about 700 time unitsDt. This
places on the mean walk length^n& previously defined the
upper bound of 700, since the process described by Eq~1!
must be completed within the cloud life cycle.

We now come back to the analysis of our lattice mod
To have a well posed problem we need to specify the bou
ary conditions. As there are no constraints acting along
horizontal direction we choose periodic boundary conditio
for this direction. On the other hand, when hitting the low
boundary the particles are subjected to the following con
tions: ~1! no flux ~confining! boundary conditions forL, ~2!
exit boundary conditions@the particle leaves the system, sc
nario (H1)], or sticky boundary conditions@the particle re-
mains confined in the boundary, scenario (H2)] for H with,
in the latter case,H being left or not the possibility to per
form a random walk in the horizontal direction. Converse
the following conditions are stipulated in the upper boun
ary: ~1! no flux ~confining! boundary conditions forH, ~2!
exit boundary conditions@scenario (L1)] or sticky boundary
conditions@scenario (L2)] for L with, again, the choice to
remain frozen or to perform a random walk in the horizon
direction.

The present work is limited to the case where only t
neutral particles of different mass or two charged particles
opposite charge are initially present in the lattice. The p
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cess described above will then be terminated when~a!, in the
scenario (H1L1), H or L reach for the first time the lower o
the upper boundary, respectively, or~b!, in the scenario
(H2L2), whenH andL eventually both reach, in any orde
the lower and the upper boundary, respectively.

We now specify the rules governing particle interactio
and particle collisions. Following recent work by the prese
authors@8,9#, we stipulate thatH andL interact via hard core
repulsion prohibiting particle crossing and the simultaneo
occupation of a given site by more than one particle.
head-on collision where one particle ofH0 and one particle
of L0 type tend to occupy the same position or to cross
considered to be a reactive collision configuration@forward
step of Eq.~1!#. It results in the conversion ofH0, L0 into
H1, L2, respectively, and the particles are reset thereafte
their previous positions. Conversely, a head-on collision
H1 andL2 will lead to the replacement byH0 andL0 and
the subsequent resetting. There is, however, a subtlety in
latter case, since it now seems reasonable to introduc
‘‘Coulomb bias’’ favoring the occurrence of reactiveH1-L2

collisions when the distance between the species is sma
principle, this bias and the one associated with the effec
gravity on the random walk ofH are to be described by
suitable Boltzmann factors. In practice, in what follows
will be expressed through a fixed enhancement of the tra
tion probability of the relevant step over the other ste
being understood that care is taken to ensure that such
ditions as conservation of total probability are satisfied.
particular, in the presence of gravitational bias the downw
transition probability will be taken three times larger than t
upward one. As for the Coulomb bias in some of the case
will be taken in its extreme form whereby charged partic
in nearest-neighbor positions will react with probability 1.

Despite its apparent simplicity the problem defined
relation ~1!, the boundary conditions and the collision
rules, is not solvable in a closed form, not even in its me
field version which already involves four coupled nonline
reaction-diffusion equations. In the following sections it w
be studied by Monte Carlo simulation techniques. Some a
lytic insight will also be obtained using the theory of fini
Markov processes.

In the Monte Carlo simulation, a large number of realiz
tions ~typically 105) is carried out, covering all possible dis
tinguishable initial configurations. In each realization the
lowed transitions are determined following the collision rul
and the usual prescriptions of the random walk. The proc
is terminated when the conditions specified earlier in
present section are satisfied.

Coming to the application of the theory of finite Marko
processes, we first briefly review the case of a single diff
ing particle and a stationary trap placed at lattice sitei 51.
The probability of the survival~without absorption! of the
particle aftern time steps starting from any initial sitei sat-
isfies the discrete version of the backward Kolmogor
equation. As a consequence of the linearity of this equat
the moments of the survival time until absorption satisfy
system of inhomogeneous, linear, simultaneous equati
Let Ti ,q

(n) ~whereq50, 1, . . . )denote theqth moment of the
4-2
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TABLE I. The Markovian and the Monte Carlo results on mean time prior to termination for a 333 and
a 535 lattice.

Scenario (H1L1)
GravityuCoulomb bias

Scenario (H2L2)
Gravity and Coulomb bias

NouNo NouYes YesuNo YesuYes H, L immobile
on boundaries

H, L mobile on
boundaries

333
lattice

Markov 10.394 11.949 5.914 7.051 21.688

Monte
Carlo 10.351 11.938 5.918 7.090 22.200 27.046

535
lattice

Markov 21.740 22.915 9.374 10.238 50.592

Monte
Carlo 21.857 22.803 9.321 10.200 47.790 52.009
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survival time~the time to trapping! for a walk originating at
site i on a given lattice of sizeN. Thus,Ti ,q

(n) is also theqth
moment of the walk length for a random walk starting ai.
By definition T1,q

(n) 50. For 2, i ,N we have, recalling tha
the time step has been set equal to unity,

2D i j Tj ,q11
~n! 5~q11!Ti ,q

~n! , ~2!

where a summation over the repeated indexj is implied, and
D i j stands for the discrete Laplacian

D i j 5
1

n i
d^ i j &

kr 2d i j
kr . ~3!

Here,n i is the coordination number of sitei, d i j
kr is the Kro-

necker delta, and̂ij & indicates thatj is a nearest neighbor o
i. The set of equations satisfied by the first moments or m
walk lengthsTi ,l

(n) is obtained by settingq50 in Eq.~2!. The
quantityTi ,o

(n) is the zeroth moment of the distribution of th
time of first passage to the trap from the origini, and is equal
to unity since absorption at the trap is a sure event for ev
starting pointi. As we shall be concerned throughout wi
just the set of first momentsTi ,q

(n) , we drop the index corre
sponding toq henceforth and writeTi

(n) for this quantity. We
therefore have

2D i j Tj
~n!51. ~4!

We seek the mean walk lengthT(n), which is the average o
Ti

(n) over starting sitesi distributed uniformly over all sites
of the lattice other than the trap sitei 51. This is given by

T~n!5
1

~N21! (i 52

N

Ti
~n!5

1

~N21! (i 52

N

(
j 52

N

~2D21! i j , ~5!

where use has been made of Eq.~4! in writing the second
equality. We note thatD is a nonsingular matrix.

The generalization of this standard approach to the cas
two ~or more! simultaneously diffusing particles as in rel
tion ~1! is to classify all initial configurations of the particle
on a given lattice and to document all concerted motio
06110
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corresponding to each such configuration into symme
distinct states@10#. That is, instead of following the site-to
site transitions of a single particle diffusing on a lattice, o
now documents the evolution of~all! joint configurations of
two ~or more! particles. This being done, the formal appar
tus of the backward Kolmogorov equation can be imp
mented directly, and numerically exact values of the me
lifetime of a reaction pair on a given lattice can be calcula
although, contrary to the one walker plus trap case, no g
eral closed form expressions can be derived. The first ste
this procedure is to specify the possible two-particle confi
rations on the lattice under study. For example, on
333 square-planar lattice, there are, in principle, 72 jo
configurations~states!. For each joint configuration, ther
are, corresponding to a given displacement of the first p
ticle, four possible displacements of the second particle
total of 16 new configurations into which a given configur
tion can evolve. Thus, the Markovian transition probabil
matrix for the forward reaction in Eq.~1! has 72316 non-
empty entries. Similarly, for two particles undergoing simu
taneous displacements on a 535 square-planar lattice, ther
are 600 possible joint configurations, and 600316 entries in
the transition probability matrix.

The problem under study involves a charge transfer f
ward step and a neutralization reaction for the reverse s
To deal with this complexity, a second manifold of possib
transitions, corresponding to the reverse reaction above,
considered explicitly. This second manifold also has
316 possible transitions for the 333 lattice and 600316
possible transitions on the 535 lattice. Transitions from the
first manifold ~the forward reaction! to the second manifold
~the reverse reaction!, and vice versa, were specified to occ
upon collision of the respective reactants. Then, using
Markovian theory outlined above, the mean number of d
placements of the reactants before the termination of the
cess~effectively, the mean lifetime of the diffusion-reactio
event! was determined directly.

To complete the technical specification of the Mark
problem, gravity was introduced by biasing the motion of t
heavy particle~only! in its vertical displacements. Coulom
bic interactions between the two particles in the ‘‘backwar
4-3
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NICOLIS, NICOLIS, AND KOZAK PHYSICAL REVIEW E 67, 061104 ~2003!
manifold were taken into account by assigning a probabi
that when the two~charged! particles were adjacent to eac
other, neutralization occurred in the very next step.

Finally, we note that the imposition of periodic bounda
conditions on the vertical boundaries of the cell allows so
simplification in the problem, by collapsing the number
joint configurations of the two particles into a subset
symmetry-distinct configurations. In the 535 lattice, for ex-
ample, the total number of symmetry-distinct configuratio
that needed to be considered dropped to 78~for each mani-
fold! when periodicity on the vertical boundaries was tak
into account.

III. WALK LENGTH STATISTICS

Table I summarizes the Markovian and the Monte Ca
results on the mean time prior to termination for a 333 and

FIG. 1. Mean walk length vs lattice size in the case of t
scenario~H1L1! in the presence of zero~a! and finite~b! gravita-
tional bias. Empty circles stand for no Coulomb bias and crosse
extreme Coulomb bias whenever particles are charged. Averagi
performed over 105 realizations and the initial positions~nonover-
lapping! of the particles on the lattice as well as their polarity a
chosen randomly. Here and in the following figures the quanti
plotted are dimensionless.
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a 535 lattice under the various conditions defined in t
preceding section. Both exit and sticky boundary conditio
are considered. As noted previously, the gravity bias wh
present, is expressed by an enhanced downward trans
probability of 3

8. The Coulomb bias, when present, is he
taken in its most extreme version in which if the two pa
ticles initially occupy adjacent or next to adjacent position
reaction will occur with probability 1.

As seen from the table, the agreement between the M
kov and the Monte Carlo results is excellent throughout,
cept in one of the situations pertaining to sticky bounda
conditions where a difference of about 5% is found. Gen
ally speaking, the gravity bias tends to accelerate the pro
drastically. The effect of the Coulomb bias goes in the op
site direction, but is less drastic that the gravitational one

The Monte Carlo simulations have also been extende
lattices of sizes up to 20320, for which the Markovian ap-
proach becomes impracticable. In view of the discussion
space scales at the beginning of Sec. II, such sizes co
spond to a linear dimension of up to a few hundred mete
They allow us to capture some essential parts of the dyn
ics, since a typical vertical extent of a single thunder cloud

or
is

s

FIG. 2. As in Fig. 1 but in the case of the scenario~H2L2!.
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a few kilometers and considerably less in the horizontal
rection.

The main result on mean walk length for the scena
(H1L1) is summarized in Figs. 1~a! and 1~b! pertaining,
respectively, to zero~a! or to finite gravitational bias for the
heavy particles~b! after an averaging over 105 realizations.
Furthermore, in each figure, the cases of no Coulomb
~empty circles! and of extreme Coulomb bias~crosses! are
depicted. As can be seen the dependence of^n& with linear
size is markedly nonlinear in the absence of gravitation,
tends to become linear when the gravitational bias is
creased. One may also notice that the values of^n& are well
below the upper limit introduced in the beginning of Sec.

Figures 2~a! and 2~b! depict the corresponding results fo
the scenario (H2L2). Here, as well as in the sequelH, L are
allowed to perform a random walk in the horizontal directi
on the boundaries. As can be seen, for the same gravitat
bias as before, the dependence of^n& with size is now clearly
nonlinear. Finally, Figs. 3~a! and 3~b! illustrate the increase
of ^n& in the case of sticky~crosses! versus exit boundary
conditions~empty circles! for extreme Coulomb bias and fo

FIG. 3. Mean walk length in the case of the scenarios~H1L1!
~empty circles! and~H2L2! ~crosses! and in the presence of extrem
Coulomb bias, with no gravity~a! and with finite gravity bias~b!.
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successively, zero~a! and finite~b! gravitational bias. Part of
this increase arises from the fact that a particle stuck in
of the boundaries can still interact with the second particle
the bulk, thereby delaying its eventual trapping at the ot
boundary.

As mentioned in the Introduction, quantities such as
mean walk lengtĥ n& provide relevant information for the
purpose of prediction, since they give an estimate, from
first principles, of the characteristic time for electrificatio
This constitutes, in turn, a lower bound for an electric d
charge to occur. In previous work by the present auth
@8,9#, it was shown that the encounter times are subjecte
high variability around their mean. In the present conte
this feature reflects the difficulties inherent in issuing qua
titative predictions on the time of occurrence of a dischar
It will be addressed in the following section using quantiti
of more direct relevance than̂n& itself, such as electric po
tential differences and electric fields.

FIG. 4. Electric potential vs vertical distancez at increasing
times as obtained from Monte Carlo simulations in a 535 lattice in
the presence of the Coulomb bias equal to3

8 with no gravity~a! and
gravity bias equal to3

8 ~b!. The number of realizations is 105 and
initially the particles are uncharged.
4-5
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IV. KINETICS OF ELECTRIFICATION

The Markov and Monte Carlo techniques can be used
monitor the instantaneous positions of the heavy and li
particles in their charged configurations and, through the
compute various quantities pertaining to the electrificat
and discharge processes such as the instantaneous val
local electric potential, electric field, and electrostatic ene
within the lattice.

Let r be the two-dimensional position vector in the lattic
r5( i , j ) wherei and j run, respectively, over the horizonta
and vertical directions. We denote byr6(t) the instantaneous
positions of the positively and negatively charged spec
The instantaneous electric potential at a pointr in the lattice
and the total instantaneous electrostatic energy of the la
are then~up to a constant multiplicative factor! given by

V~r ,t !5(
r8

d r8,r1~ t !
kr

2d r8,r2~ t !
kr

ur2r 8u
, ~6!

W~ t !5(
r ,r8

d r ,r1~ t !
kr d r8,r2~ t !

kr

ur1~ t !2r2~ t !u
, ~7!

FIG. 5. Mean potential difference~a! and mean square deviatio
of potential difference~b! without gravity bias~full line! and with
gravity ~dashed line!. Parameters as in Fig. 4.
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being understood thatV50, W50 when the particles happe
to be in their neutral form. As for the instantaneous elect
field at pointr , it can be computed from Eq.~6! through the
discretized version of the relationE52“V.

For the prototypical model of two reacting and diffusin
particles considered in the present work,V and E would
fluctuate in both space and time andW would fluctuate in
time in any given realization of the process. Some gene
trends concerning their behavior can, however, be obtai
by averaging expressions~6! and ~7! and related quantities
over different realizations, each of these realizations be
carried out till its termination. In the scenario (H1L1) this
means thatr6(t) will sooner or later be found outside th
lattice: V, E, andW will eventually tend to zero, and after a
transient stage of electrification the lattice will be discharg
In contrast, in the scenario (H2L2) the lattice will finally be
subjected to charge separation and behave as a condens
least until the conditions for a dielectric breakthrough a
met. In both cases, the variability of the relevant quantit
around the mean will also be probed by constructing app
priate probability distributions.

FIG. 6. Probability density of times for the system to reach
prescribed critical potential differenceDVcr with no gravity~a! and
with gravity ~b!. Parameter values as in Fig. 4.
4-6
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FIG. 7. Probability distribution of the vertical distances of electrified particles at different times under the conditions of Fig. 4~b! and
50 000 realizations.
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Figures 4~a! and 4~b! describe the instantaneous me
vertical spatial profiles of the electric potential in a 535
lattice in the absence~a! and presence~b! of gravitational
bias and for the Coulomb bias equal to3

8, in the scenario
(H2L2). Figure 5~a! shows how the mean potential diffe
ence DV5→1 between the top and bottom of the layer
building up in the course of time. The standard deviation
the instantaneous potential differences associated with di
ent realizations around this mean is depicted in Fig. 5~b!.
One observes a high variability of potential differences, clo
to 50% at the time of the peak value of the mean.

A quantity of great interest that can be inferred from F
5~a! is the timetcr at which a threshold valueDVcr of the
potential difference is crossed. This will provide informatio
on when a discharge can take place by taking appropr
threshold valuesDVcr , as long as these values do not exce
the maximum value that can actually be attained. As an
ample, forDVcr50.5 one finds from Fig. 5 in the presence
gravitational bias a timetcr of about 70 units. On the othe
hand, on the basis of Fig. 5~b! one expects that this valu
06110
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will be subjected to variability. More generally, level cros
ing processes and extreme value related properties are kn
to exhibit in their own right a high variability around th
mean@11#. To assess the presence of such a property in
problem at hand we monitor the crossing times of the thre
old value by the individual realizations of the process, a
construct from these data the corresponding probability d
sity. The result is shown in Figs. 6~a! and 6~b! for different
threshold valuesDVcr in the absence~a! and presence~b! of
the gravitational bias and for a Coulomb bias of3

8. We ob-
serve the presence of long tails, suggesting that large de
tions from the mean can occur with high probability. For t
example ofDVcr50.5 considered in connection with Fig. 5
one obtains^tcr&'45.5, very different from the valuetcr
'70 inferred from the kinetics of the mean potential diffe
ence. This reflects the high variability of the process as w
nessed also by a standard deviation^dtcr

2 &1/2'27.1, quite
comparable to the mean. It provides an interpretation of
observation that the times at which an electric discharge
curs are widely distributed and hence difficult to predict.
4-7
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also shows that the intrinsic fluctuations generated by
dynamical processes present tend toadvancethe crossing
process.

We turn now to a closer analysis of spatial variabili
Such variability, if present, would reflect the fact that flu
tuations are not manifested coherently at the level of
whole system but possess, rather, a markedly inhomogen
character. This is supported by recent results showing
inhomogeneous fluctuations tend to be favored when non
ear dynamical processes are taking place in low-dimensi
spaces@12#.

An interesting quantifier of spatial fluctuations is provid
by Fig. 7, in which the histogram of the vertical distanc
uz12z2u of the charged particles in a 535 lattice recorded
in the different realizations of the process is constructed
the scenario (H2L2) and in the presence of the gravity an
Coulomb bias equal to38. We see that prior to its settling to
value equal to the vertical size of the cloud, this varia
exhibits strong fluctuations. These are manifested b
‘‘seeding’’ process where, starting from a homogeneous s
ation, large distances become suddenly realized at abou
time units. Following this seminal event a substantial pro
ability mass is built in the range of these distances, such
at about 50 time units~a time of the order of the mean en
counter times computed in Sec. III! one observes a transien
bimodality.

The above behavior has interesting repercussions in
properties of the local electric field. To derive these prop
ties the instantaneous values of the field are recorded in
lattice point. From this information, their meanĒ, maximum
Emax, and minimumEmin over the lattice are deduced at ea
time. Carrying the process for different realizations one c
then construct the statistical properties of these quanti
Figure 8 depicts the time dependence of^Ē&, ^Emax&, ^Emin&
and of the associated standard deviations over the rea
tions for a 535 lattice. As can be seen, the local elect
field varies over a wide range of values while its spa
mean remains very small for all times. This is further illu
trated in the histograms associated with these quant
shown in Fig. 9 at a time ofn550 of the order of the mean
encounter time~Table I!. The most probable value ofEmax is
about 0.15, which is just what one obtains by dividing t
plateau value ofDV5→1 in Fig. 5~a! by the vertical size of
the lattice. But as the figure shows, much higher values
Emax can also be sustained in the lattice and persist for l
times. Such ‘‘hot spots’’ are natural candidates for initiating
microdischarge. The latter will die out or evolve to a fu
fledged lightning according to whether the heat and cha
transfer rates will be faster or slower than the time scale
the local~reactive! dynamics. This could provide a rationa
of recent observations@13# that the conventional breakdow
mechanism alone cannot trigger lightning. This view is f
ther corroborated by the time dependence of the electros
energy @Eq. ~7!#, shown in Figs. 10~a! and 10~b! in cases
(H1L1) ~a! and (H2L2) ~b!. In both cases the particles a
initially taken to be in the uncharged configuration. We s
that the energy first evolves toward a maximum that
reached at a time close to the value given in Table I under
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relevant conditions. Subsequently, it falls off on a long
time scale reaching a value equal to zero in case (H1L1)
and to a finite plateau in case (H2L2). In a one-dimensional

FIG. 8. Time evolution of the mean~full lines! and mean square
deviation ~dashed lines! of the electric field~a!, and its local ex-
treme values, maximum~b! and minimum~c!. Number of realiza-
tions is 50 000 and parameter values as in Fig. 4~b!.
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system, the value of the latter would be just 0.25~the inverse
of the height of the lattice! multiplied by the probability
~roughly equal to1

2! that the particles reach the boundaries
their charged configurations. In the present case of the t

FIG. 9. Probability density of the quantities of Fig. 8~a!–~c! at
n550.
06110
o-

dimensional lattice the value is smaller, since the partic
are allowed to move in the horizontal direction as well.

V. CONCLUSIONS

The study of electrical structure in thunderstorm clou
has proved to be an ongoing source of fascination and fr
tration for generations of meteorologists. Recent revie
@2,3# stress the need for both further laboratory investigatio
of charge transfer and modeling studies of charge separa
in the presence of gravity and convection.

The study undertaken in the present paper reveals
rather remarkable fact that even when the complex, syn
getic processes of charge formation or neutralization, dif
sion and gravitational bias are stripped down to design
simplest possible lattice-statistical model, one arrives a
qualitative understanding of the onset of spontaneous ele
fication. Furthermore, a number of subtle effects are alre
at play at that level of description leading to the onset~or

FIG. 10. Time dependence of the electrostatic energyW(t) in a
535 lattice averaged over 105 realizations in cases (H1L1) ~a! and
~H2L2! ~b! for zero gravity~full line! and for gravity bias~dotted
line! equal to 3

8. Coulombic bias is set to38 and initial conditions
correspond to neutral particles.
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not! of nonlinear behavior in the lifetime of the system as
function of spatial extent, to high spatiotemporal variabil
and to nontrivial kinetics.

Consider first Fig. 1. In the scenario (H1L1), wherein
heavy and light particles survive until one or the other ex
the system, the profile of the system lifetime~as monitored
by the mean number of particle displacements before te
nation! as a function of the system size displays a distinc
nonlinear character in the absence of a gravitational bias
the motion of the heavy particle. However, upon introduc
a gravitational bias~by imposing an enhanced probabili
that the heavy particle moves vertically downward and a c
respondingly smaller probability that it moves vertically u
ward!, both the qualitative and quantitative behaviors of t
evolution profile change. Qualitatively, the nonlinear beh
ior evident in Fig. 1~a! collapses to a quasilinear behavior
Fig. 1~b!. And, quantitatively, there is more than a sixfo
decrease in the lifetime of the system when a gravitatio
bias influences the random, diffusive motion of the hea
particle.

In the scenario (H2L2) wherein the heavy particle is en
trained on the lower boundary and the light particle on
upper boundary on first encounter, whereas the evolu
profiles in the absence@Fig. 2~a!# and presence@Fig. 2~b!# of
gravity are both nonlinear, there is now a remarkable dilat
in the time scale of the processvis-à-vis the scenario
(H1L1), viz., a fourfold increase in the absence of grav
and a 12-fold increase in the presence of gravity. Th
qualitative differences are shown plainly in Fig. 3.

Also evident in Figs. 1–3 is the relative unimportance
the Coulomb bias, even taken in the extreme limit wher
neutralization occurs with unit probability when the tw
charged species, in their otherwise random motion, happe
occupy nearest-neighbor sites on the lattice. The qualita
effect of introducing the Coulomb bias is to dilate slight
the lifetime of the process, this owing simply to the tim
delay induced by the neutralization step.
ys

ite
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An important feature that came out from the subsequ
analysis is the high temporal and spatial variability of t
process and its repercussions in the electrification and
charge processes. In particular, the pronounced dispersio
the time at which the system may cross a threshold valu
potential difference~Fig. 6! and the fact that high electric
field values can occur transiently with appreciable proba
ity ~Fig. 9! suggest a nucleation-type mechanism, where
microdischarges are initiated around hot spots within the
tice. They also draw attention on the need that the moni
ing and prediction methods of discharges in real clou
should integrate the high dispersion of impact times and
pact points, inherent in such a spatiotemporal variability.

Much of the analysis of the two-particle system carri
out in this work can be applied to the more realistic case o
dilute many-particle system, in which the mean time betwe
successive binary collisions is longer than the exit time
one of the particles of a colliding pair. The only new effe
would be a density-related one, causing an increase of
time of the overall termination of the process owing to t
availability of more than one colliding pairs. Of more inte
est would be to incorporate many-body effects in the Mo
Carlo and the Markovian analysis giving rise, in particular,
particles participating in repeated binary collisions or tern
and higher-order ones. The electrification process would
doubtedly become more intricate. In particular, it could yie
the multipolar structure known to occur in real world clou
@2,3#, instead of the dipolar structure characteristic of o
two-particle system.
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